FC2ブログ

数学 整数論「素数の宇宙の世界」/【今日の数学者】2月23日生 志村五郎 /京都 出来事・

数学 整数論「素数の宇宙の世界」 Dream of  G. Shimura?   (志村理論:志村多様体・志村ゼータ関数・志村曲線・志村モデル・志村系リフト・・) 【今日の数学者】2月23日生 志村五郎

樫の実の「記憶のメモ」を少しづつ・・・

自主ゼミ用推薦図書は 「教科の手引き」
http://www2.sci.kyoto-u.ac.jp/lib/syllabus/02.html

=樫の実の先生や先輩らとともに=
(京都 樫の実WEB学園より)
1994年11月10日
京都賞 受賞記念講演 アンドレ・ヴェイユ(基礎科学部門 受賞(数学 整数論・代数幾何学など))、黒澤明(映画・演劇) 国立京都国際会館へ (樫の実の先生や先輩らとともに)
http://kyotoka4no3.seesaa.net/article/467114682.html

1990年08月21日
祝! フィールズ賞を受賞 森重文 京都大学数理解析研究所教授 「3次元の代数多様体の極小モデル証明」
http://kyotoka4no3.seesaa.net/article/467115516.html

//////
数学 整数論「素数の宇宙の世界」 Dream of  G. Shimura?   (志村理論:志村多様体・志村ゼータ関数・志村曲線・志村モデル・志村系リフト・・) 【今日の数学者】2月23日生 志村五郎

志村五郎先生「誕生日」の「素数の世界」  (【今日の数学者】2月23日)志村五郎 スケッチ700ss


数学の超難問「フェルマーの最終定理」の証明につながる予想を提唱した米プリンストン大名誉教授の志村五郎さん


「すべての楕円曲線はモジュラーである」  ( 「谷山=志村予想」は、「志村予想」だった! 先生の「誠実さ、優しさ」)数学の統一理論にも貢献!

【今日の数学者】2月23日はガウスの命日であり、志村-谷山予想の志村五郎先生のお誕生日であり、フィールズ・メダリストの森重文先生のお誕生日です。

つまり、志村五郎先生は。ガウスの生まれかわり?なのだ! (ガウスは、数学の女王は、「整数論」といった。)

 志村さんは整数論が専門。1950年代~60年代に、故谷山豊・東京大助教授と共に楕円(だえん)曲線の性質に関する「谷山=志村予想」を提唱。この予想を手がかりに、提示から350年以上数学者を悩ませてきた整数論の難問、フェルマーの最終定理が、英国のアンドリュー・ワイルズさんによって95年に証明された。
 
1930年 静岡県浜松に生まれる
1952年 東京大学理学部数学科卒業
1957年 パリ、ポアンカレ研究所『近代的整数論』(谷山豊との共著)
1958年 プリンストン高等研究所
1959年 東京大学助教授
1961年 大阪大学教授
1964年 プリンストン大学教授
(アメリカ在住、プリンストン大学名誉教授 専門は整数論)

 東大卒業後、同大助教授などを経て、64年から99年までプリンストン大教授を務めた。77年に米数学会「コール賞」、91年度に朝日賞を受賞。

( 京都で何度も「志村スクール」を開催されています。)
 
志村五郎先生 業績


1958年 - 国際数学者会議招待講演(エジンバラ)
1966年 - 国際数学者会議招待講演(モスクワ)
1970年 - 国際数学者会議招待講演(ニース)
1977年 - アメリカ数学会コール賞数論部門:"Class fields over real quadratic fields and Heche operators", Annals of Mathematics, Ser. 2, Vol. 95, 1972; "On modular forms of half integral weight", Annals of Mathematics, Ser. 2, Vol. 97, 1973に対して
1978年 - 国際数学者会議招待講演(ヘルシンキ)
1991年 - 朝日新聞社朝日賞:整数論の研究
1995年 - 藤原科学財団藤原賞:アーベル多様体の虚数乗法論と志村多様体の構成
1996年 - アメリカ数学会スティール賞(生涯の業績部門):重要かつ広範な分野におよぶ数論幾何学と保型形式の業績に対して
//////
志村五郎(1930年2月23日)
の「誕生日の12次元」の「数」
「数」⇔「反転数(鏡の数)」


1.19300223⇔32200391
2.23051930⇔3915032
3.2231930⇔391322
4.19302302⇔20320391
5.2193023⇔3203912
6.23193002⇔20039132

///////////////////////
志村五郎(1930年2月23日)の「6つの数 (6 Number)シックスナンバー」
1.19300223
2.23051930
3.2231930
4.19302302
5.2193023
6.23193002

志村五郎(1930年2月23日)の「6つの反転数 (6 Inversion Number)シックス・インバージョン・ナンバー」
7.32200391
8.3915032
9.391322
10.20320391
11.3203912
12.20039132
///////////////////////

すごい「素数」が存在する?
 
問1 志村五郎(1930年2月23日)の場合
「数」を「素因数分解」する。
12Number(12ナンバー)
12Prime factorization(12個の素因数分解)
1.19300223=
2.23051930=
3.2231930=
4.19302302=
5.2193023=
6.23193002=
7.32200391=
8.3915032=
9.391322=
10.20320391=
11.3203912=
12.20039132=
 
 
問A 志村五郎(1930年2月23日)の場合
「数」→ 「APS素数」
12Number(12ナンバー)→ 12Prime(12プライム)
1.19300223→ 
2.23051930→ 
3.2231930→ 
4.19302302→ 
5.2193023→ 
6.23193002→ 
7.32200391→ 
8.3915032→ 
9.391322→ 
10.20320391→ 
11.3203912→ 
12.20039132→ 
/////
//////
https://ja.wikipedia.org/wiki/志村五郎


フェルマーの最終定理 (新潮文庫) - サイモン シン 文庫 ¥853志村五郎 先生の 書籍 と 物語ss


谷山志村予想「フェルマーの最終定理」ss

フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、3 以上の自然数 n について、(xのn乗) + (yのn乗) = (zのn乗) となる自然数の組 (x, y, z) は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、フェルマーの死後360年経った1995年にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。
//////
やや専門的内容
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/689.html

https://www.ms.u-tokyo.ac.jp/~abenori/conf/20150817.html

http://www.sci.kumamoto-u.ac.jp/~narita/ss2011_proceedings.pdf

http://ntw.sci.u-toyama.ac.jp/ss2017/

http://www.ist.aichi-pu.ac.jp/~tasaka/ss2018/index.html

https://core.ac.uk/download/pdf/42026066.pdf

ワイルズによるフェルマー予想の解決にも岩澤理論は大きな役割を果たした。 また、これ以外にも日本人数学者の結果が大きく寄与している。例えば、 肥田(晴三)の理論が有効に用いられたし、解決への道筋は谷山・志村予想を 経由するものであった。 
(世間では「谷山志村予想」だが、専門化の間では、「志村予想」である。)
/////


志村五郎 記憶の切繪図 鳥のように 700

志村五郎先生の書籍(1部)ss


「すべての楕円曲線は、モジュラーである」 
モジュラーの世界のイメージss
//////


あの頃 数学 整数論(志村理論)を知る 「数を読む」
////// 

//////

ワイルズによるフェルマー予想の解決にも岩澤理論は大きな役割を果たした。 また、これ以外にも日本人数学者の結果が大きく寄与している。例えば、 肥田(晴三)の理論が有効に用いられたし、解決への道筋は谷山・志村予想を 経由するものであった。 
 「谷山=志村予想」は、「志村予想」だった! 先生の「誠実さ、優しさ」
/////
以下、数学の学習テーマ?の計画?
「志村理論の研究」計画?

・・・・・・
整数論サマースクール「多重ゼータ値」
整数論サマースクール「楕円曲線とモジュラー形式の計算」
整数論サマースクール「保型形式のp進family入門」
整数論サマースクール「志村多様体とその応用」
整数論サマースクール 「非可換岩澤理論」
整数論サマースクール 「p 進簡約群の表現論入門」
整数論サマースクール 「Stark 予想」
整数論サマースクール 「保型形式のリフティング」
整数論サマースクール 「アーサー・セルバーグ跡公式入門」
整数論サマースクール 「l 進ガロア表現とガロア変形の整数論」
整数論サマースクール 「保型 L 函数」
整数論サマースクール 「種数の高い代数曲線と Abel 多様体」
整数論サマースクール 「Diophantine Equations」
整数論サマースクール 「Hilbert 保型形式」
整数論サマースクール 「基本群と Galois 表現」
整数論サマースクール 「岩澤理論」
整数論サマースクール 「概均質ベクトル空間」
整数論サマースクール 「ゼータ関数」
整数論サマースクール 「半整数ウェイトの保型形式」
整数論サマースクール 「代数群の整数論入門」
整数論サマースクール 「楕円曲線とその Arithmetic Moduli」
整数論サマースクール 「Siegel 保型形式入門」
整数論サマースクール 「Weil 表現入門」
整数論サマースクール 「等質空間と保型形式」
整数論サマースクール 「志村多様体と保型形式」
整数論サマースクール 「アイゼンシュタイン級数について」


・整数論全般
加藤 和也, 斎藤 毅, 黒川 信重, 数論1(Fermatの夢と類体論), 岩波.
黒川 信重, 斎藤 毅, 栗原 将人, 数論2(岩沢理論と保型形式), 岩波.

//////
<数学の女王 「整数論 」 >数学者・志村五郎はなぜ東大を去ったか? 丸山眞男~戦後進歩的知識人との決別の理由/志村理論の始まりは・・・「すべての楕円曲線はモジュラーである」

東大受験必読、数学者・志村五郎の遺した言葉 (ちくま学芸文庫 「数学をいかに使うか」(2010)「数学の好きな人のために」(2012)「数学で何が重要か」(2013) そして「数学をいかに教えるか」(2014) の4冊)
 

<数学 「整数論」の世界的権威> 300年来の超難問証明に貢献、志村五郎氏死去 (志村五郎先生のご冥福を、お祈りいたします。)
 

数学者(整数論) 志村五郎氏死去 (谷山志村予想とフェルマーの最終定理 300年来の超難問証明に貢献) 2019年 5月3日 

参考
2015年11月
///// 
ラングランズ・プログラム(英: Langlands program)は、代数的整数論におけるガロア群の理論を、局所体およびそのアデール上で定義された代数群の表現論および保型形式論に結び付ける非常に広汎かつ有力な予想網である。同プログラムは Langlands (1967, 1970) により提唱された。

ラングランズ・プログラム(英: Langlands program)は、日本の「志村五郎氏」による進展が大きい。

//////

知の``継承''が生む創造力 (志村 五郎 米プリンストン大学名誉教授) 2001年11月8日
 
 
   昔から「日本人はまねはうまいが,創造力は乏しい」とよく言われる. 特に,自然科学の分野では,今日でも著名な学者たちがそう言っている. 果たしてそうだろうか.私はその逆に,日本人は世界で最も創造力に富む国民の中に入るのではないかと思う.歴史的にみて,欧米の科学 知識を吸収するのに多くの労苦と時間を要したのは当然であって,それを前提にして考えると,日本の科学者たちは実によくやっている. 科学というのは,多くの人の業績の積み重ねであって,「ゼロからの出発」はあり得ない.私の専門は数学だが,過去五十年間にわたる日 本の数学者たちの創造的な貢献は目覚ましく,何ら恥ずべきものはない. にもかかわらず,常に,その反対が叫ばれるのはなぜか.恐らく,明治以後の日本の進歩と発展に驚いた欧米人が,日本人を全面的に称賛したくなかったために,ケチを付けようと「まねは上手だが……」と言ったのが発端ではないだろうか.そして,その言葉を日本人の劣等感と欧米崇拝が,甘受してきた大きな理由と思う.また,欧米人と比べると日本人は宣伝が下手で,しかも,一般的に言って同国人の仕事(業績)を認めたがらないといった気質も加わっているのだろう.もし,本当に日本人が創造力に乏しいというのなら,それを証明して欲しいものである.私にとって不可解なのは,著名な学者までが自国民をけなしている態度である.考えてもみよ.世界のどこにそんなことを言って喜んでいる国があるか.その上,以前からこの問題を教育方法と結びつけて論じる人がいるが,そこに大きな危険が潜んでいることを指摘したい.
「丸暗記を廃して思考力を高めよ」というスローガンに反対する理由もないが,それを叫ぶのはほとんど無意味である.特に,そこから「教える分量を減らせ」という結論を引き出すのは誤りだ.それを論ずる前に,まず科学のある重要な考え方は,その創始者にとっては多大な努力の後の到達点であっても,次の世代にとってはそれが当たり前の常識になって,次の発展の母胎になるという事実を忘れてはならない.それは研究者の間だけに当てはまるものではなく,一般社会においてもそうである.例えば,毎日接する「降水確率」に使われている確率という概念がよい例である.そう考えてみると,確率ばかりではなく,教えられるき事実や概念の 分量の多くは,それはますます増えていくだろう.もちろん古くて重要性を失ったものは切り捨てて,新しいものと置き換えられるべきだが,その作業は専門教育でも一般教育でも慎重に行わなければならない.大学生の学力低下は現実に起きているのである.付け加えると,まねが上手なのは良いことで,それもできないようでは何もできない.「まねは上手だが創造力はない」などと,それこと 人の口まねのようなことを言うのはやめて欲しいものである.まして,それを教育方法,特に,教える分量に結びつけるのは実に愚劣だ.はじめに戻って欧米人について言うと,彼らの中には,日本人のまねをして,あたかも自分の独創のように上手に宣伝するものがいる.いまもって,彼らが全体としてそうした卑劣な能力を失ったわけではないから,日本人の仕事が公平に評価されていると思ってはならない.だから宣伝上手になれとは言わないが,若き世代へ私の忠言は,いかなる研究も中途半端にせず,どうしても認めさせずにはおかない水準にまで撤底的にやれということである.創造はしばしば撤底から生まれ,そしてまた,若き諸君にそれができるはずなのである. 大阪大学教授などを歴任.95年に自然科学者に贈られる藤原賞を受賞. 71歳. 「論点」読売新聞
////// 

//////
動画
//////
数学ミステリー白熱教室 (第1回から第4回)動画(フェルマー予想 から ラグランズプログラム)
https://www.youtube.com/watch?v=octSjc1Sk2U&list=PL6iz98WS2YpRGR2egcplCqKnx6PBr3czn


〔NHKスペシャル〕神の数式 (第1回から第4回) 動画
https://www.youtube.com/watch?v=KjvFdzhn7Dc&list=PL6PDU-7OA2gdvu3jhxo1QABgR9SGeCkCb


素数と宇宙。量子力学と一般相対性理論。分離され停止した空間。
https://www.youtube.com/watch?v=NvRAWCfRy-E

〔NHKスペシャル〕魔性の難問 ~リーマン予想・天才たちの戦い~
https://www.youtube.com/watch?v=Kq347dxQYJY
//////

ポアンカレ予想 nhk
https://www.youtube.com/watch?v=n6g40tnkRKg


【ポアンカレ予想】 グリゴリー・ペレルマン博士の現在
https://www.youtube.com/watch?v=6HuFJcqdsic


//////
フェルマーの最終定理 【著者】サイモン•シン(青木薫 訳) 【発行】新潮社(新潮文庫) / 「解決!フェルマーの最終定理 現代数論の軌跡」加藤和也著、日本評論社

//////
文系用読者:「教育者」としてのあの頃の感覚として読む
//////

フェルマーの最終定理 【著者】サイモン•シン(青木薫 訳) 【発行】新潮社(新潮文庫)

整数に関する問題は、問題を理解するのはやさしいが解くのはとてつもな く難しいことが多い。この本の表題ともなっている「フェルマーの最終定理」 の証明もそのような整数問題の1つであり、アマチュア・プロを問わず 300 年もの間、多くの数学者の挑戦を退けてきた問題である。1995 年最終的に 証明を成し遂げた勝者はアンドリュー・ワイルズという数学者であった。し かし、その証明への取り組みは試練に満ちており、7年間の隠密行動、そし て1度は証明できたと発表して、その後証明に穴があることがわかり1年余 りの間、公にさられた状態での穴埋め作業の末ようやく証明完了というドラ マが書かれています。谷山、志村、岩澤、肥田といった日本人数学者もからみ、困難な問題にチャレンジする人間模様を描いた物語として、一読を。

//////
理系用読者:「数学者」としてのあの頃の感覚として読む
//////

【書名】「解決!フェルマーの最終定理 現代数論の軌跡」加藤和也著、日本評論社
( フェルマーの大定理が解けた!―オイラーからワイルズの証明まで (ブルーバックス) 足立恒雄著 新書 )
( フェルマーの大定理―整数論の源流 (ちくま学芸文庫) 足立恒雄著 )
( フェルマーの最終定理 文庫 フェルマーの最終定理 (新潮文庫) サイモン シン(著), 青木 薫 (翻訳) )


1993年6月23日に、プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を宣言し、その後、証明の不備が見つかり、1年以上に苦考の末、1994年9月19日にその修正に成功したこの期間に、著者が証明の解説として数学セミナー読者向けに書いたものを集めたものである。厳密性はないが、極力丁寧に、正確に伝えようとする、著者の誠実さと、理解の深さが伝わってくる。原論文の 1. A. Wiles; Modular elliptic curves and Fermat's last theorem, 2. R. Taylor, A. Wiles; Ring theoretic properties of certain Heck algebras にも、整数論にも、非常に惹きつけられる内容だった。購入時にも読んだと思われるが、詳しく覚えていないところをみると、理解しようとはしていなかったのかもしれない。むろん、今回も十分な時間をかけて読んだとは言えないが。

以下は備忘録

「砂田利一『基本群とラプラシアン、幾何学における数論的方法』」(p.37)「ワイルス『ぼくは、フライとリベットの結果を知ったとき、風景が変化したことに気がついた。(中略)この時まで、フェルマの最終定理は、何千年間もそのまま決して解かれることがなく数学がほとんど注目することがない数論の他の[散発的かつ趣味的な]ある種の問題と同じようなものに見えていた。フライとリベットの結果によって、フェルマの最終定理は、数学が無視することのできない重要な問題の結果という形に変貌したのだ。(中略)ぼくにとって、そのことは、この問題がやがて解かれるであろうと言うことを意味していた』」(p.67)「清水英夫著『保型関数I, II, III』、志村五郎著『Introduction to the theory of automorophic functions』、Knapp『Elliptic curves』、河田敬義著『数論I, II, III』、藤崎源二郎・森田康夫・山本芳彦著『数論への出発』、上野健爾著『代数幾何学入門』、J.H.シルヴァーマン・J.テイト著(足立恒雄〔ほか〕訳)『楕円曲線論入門』、土井公二/三宅敏恒著『保型形式と整数論』、肥田晴三著『Elementary theory of L-functions and Eisenstein series』、吉田敬之著『保型形式論: ─現代整数論講義ー』、N.コブリンツ著(上田勝〔ほか〕訳)『楕円曲線と保型形式』」(p.123,4)「田口雄一郎さんの手紙に『Deligne さんの家はこの道の始まりのところ、森の入り口にあります。Deligne さんといへども、森羅万象の真理の最奥に至る道のほんの入口のところにゐるに過ぎないといふ、これは自然による卓抜な比喩であると思われます。ところが、恐ろしいことに彼の子供たちは毎日この道を通って森のむかうの学校に通ってゐるらしいのです。』とありました。フェルマーからの350年は大進歩でしたが、人類が続いてゆけば、それは今後何千年の数学の序曲であり、何段も何段も自然の深奥への新しい段階があることでしょう。」(p.239)「ガウス『どのように美しい天文学上の発見も、高等整数論が与える喜びには及ばない』ヒルベルト『数論には古くからの問題でありながら、今日も未解決のものが少なくない。その意味で、多くの神秘を蔵する分野であるが、他方、そこで展開される類体論のような、世にも美しい理論がある』」(p.245)「岩澤健吉『代数体と、有限体上の一変数関数体は、どこまでも似ていると信じてよい』」(p.246)「志村五郎は『整数論いたる所ゼータ関数あり』と述べたが今その言葉に『ゼータ関数のある所 岩澤理論あり』と続けて考えたい」(p.261)『ゼータ関数のある所 肥田理論あり』ともいえる。

「フェルマーの最終定理」を理解したい人(参考 書籍紹介)

N.コブリンツ著(上田勝〔ほか〕訳)『楕円曲線と保型形式』
土井公二/三宅敏恒著『保型形式と整数論』
志村五郎著『Introduction to the theory of automorophic functions』
J.H.シルヴァーマン・J.テイト著(足立恒雄〔ほか〕訳)『楕円曲線論入門』
Knapp『Elliptic curves』
河田敬義著『数論I, II, III』
藤崎源二郎・森田康夫・山本芳彦著『数論への出発』
上野健爾著『代数幾何学入門』
肥田晴三著『Elementary theory of L-functions and Eisenstein series』
清水英夫著『保型関数I, II, III』
吉田敬之著『保型形式論: ─現代整数論講義─』
砂田利一著『基本群とラプラシアン、幾何学における数論的方法』

原論文の
1. A. Wiles; Modular elliptic curves and Fermat's last theorem,
2. R. Taylor, A. Wiles; Ring theoretic properties of certain Heck algebras

志村五郎 書籍(日本語 一般向け)
(一部、数学では、一般向けでないものもあるので注意を)

論文集 (志村五郎)
Collected Papers. I: 1954-1965 (Hardcover ed.). Springer. (2002). ISBN 978-0-387-95406-6.
Collected Papers. II: 1967-1977 (Hardcover ed.). Springer. (2002). ISBN 978-0-387-95416-5.
Collected Papers. III: 1978-1988 (Hardcover ed.). Springer. (2003). ISBN 978-0-387-95417-2.
Collected Papers. IV: 1989-2001 (Hardcover ed.). Springer. (2003). ISBN 978-0-387-95418-9.
など
//////
//////
京都賞 受賞記念講演 黒澤 明(思想・芸術部門映画・演劇)、アンドレ・ヴェイユ(基礎科学部門 受賞(数学 整数論・代数幾何学など))国立京都国際会館へ (大学の研究室 教授らとも、京大の友人とも)ame



あの頃考えていたこと(学問編)メモvol.2  数学 整数論(志村理論)を知る 「数を読む」Jugem



あの頃考えていたこと(学問編)メモvol.1  数学 整数論(志村理論)を知る 「数を読む」 se



数学 整数論「素数の宇宙の世界」 Dream of G. Shimura? (志村理論:志村多様体・志村ゼータ関数・志村曲線・志村モデル・志村系リフト・・) 【今日の数学者】2月23日生 志村五郎 li




1993年6月23日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を宣言 fc2




1994年9月19日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明を修正 li


1995年2月13日 プリンストン大学のA.ワイルスが、フェルマーの最終定理の証明(完成)se



感動!数学の歴史 「350年の難問解決! フェルマーの最終定理」 1995年2月13日( 数学[整数論]) ame

//////
参考


(個人的に、「平成30年間」に影響を受けた書籍(一部分))

<平成30年の読むべき30冊?「書籍・思索の旅(好書好日)」>平成の30冊、1位に1Q84「平成は村上春樹の時代」

平成30年の「120冊」  個人的セレクト 数学書(数理科学関係 編)

平成30年間の31冊  個人的セレクト 数学書(数理科学関係 編) 洋書(英語版)
//////


自主ゼミ用推薦図書は 「教科の手引き」
http://www2.sci.kyoto-u.ac.jp/lib/syllabus/02.html

数理科学系

書名/著者名
◇教員による(?)コメント 出版社,出版年 備考
数論入門 (現代数学への入門) / 山本芳彦著 岩波書店 , 2003.11 現代数学への入門, 2003-2004
電子ブック
◇整数や素数の基本的な性質からはじめて,合同式,平方剰余の相互法則,2次体の整数論が解説されている。また後半では高度な話題も扱われている。具体例が豊富に載っているので,抽象的な議論に慣れていなくても,手を動かして読み進めることができる。代数学の入門書としても適している。
//
体とガロア理論(大学数学の入門;3 代数学 ; 3) / 桂利行著 東京大学出版会 , 2005.9
◇ガロア理論の手軽な入門書。体の理論,拡大体の理論,ガロアの基本定理が扱われた後,応用として代数方程式の可解性や定規とコンパスによる作図可能性が解説されている。大部ではないので,気楽に読み通すことができる。
//
Fermatの夢と類体論 (数論 ; 1) / 加藤和也,齋藤毅,黒川信重著 岩波書店 , 2005.1
◇類体論の教科書。『どのような素数が二つの平方数の和で表されるか』といった素朴な問題からはじめて,楕円曲線,p進数,ゼータ関数,アデール・イデールといった概念が導入され,類体論が解説される。続編として,岩澤理論や保型形式論などの高度な話題を扱った「数論Ⅱ」もある。

岩澤理論や保型形式論 (数論 ; 2) / 加藤和也,齋藤毅,黒川信重著 岩波書店
//
代数曲線論(講座数学の考え方;18) / 小木曽啓示著 朝倉書店
◇複素数体上の代数曲線(コンパクトリーマン面)の教科書。リーマン球面の定義から始めて,層や層係数コホモロジーの理論が展開され,セールの双対定理やリーマン-ロッホの定理とその応用が扱われる。代数曲線論をきちんと学んでおくと,より高度な代数幾何学を勉強するための足がかりにもなる。
//
楕円曲線論入門 / J.Hシルヴァーマン,J.テイト著 ;足立恒雄 [ほか] 訳 シュプリンガー・フェアラーク東京
◇整数論的な楕円曲線論の教科書。有理数体上の楕円曲線の有理点が有限生成アーベル群をなすというモーデルの定理をはじめとした様々な定理が紹介・証明されている。また最後の章では虚数乗法論が解説されている。
//
曲線と曲面の微分幾何 (改訂版) / 小林昭七著 裳華房 , 1995.9
◇曲面上の微分幾何学について,ガウスボンネの定理までを丁寧に解説してあり,具体例の計算も豊富に載っている。
//
Using the Borsuk-Ulam theorem : lectures on topological methods in combinatorics and geometry (Universitext). / Jiří Matoušek ; written in cooperation with Anders Björner and Günter M. Ziegler  - 2nd, corr. printing Springer, 2008 電子ブック
◇Borsuk-Ulam の定理というトポロジーにおける初等的な定理の様々な変種や、グラフの彩色数などを含む組み合わせ論の問題への応用を解説する。英語は平易で、直感的にわかりやすい。予備知識は線形代数の初歩だけで、位相空間の知識は必要ない。トポロジーの入門書でもあり、組み合わせ論の解説書でもある。
//
双曲幾何 (現代数学への入門). / 深谷賢治 岩波書店 , 2004.9 電子ブック
◇線形代数と微積分だけで読める双曲幾何の入門書。双曲幾何とは非ユークリッド幾何の一つで、現代数学で重要な役割を演じている。
//
トポロジー入門 (共立講座21世紀の数学 ; 7)/ 小島定吉 共立出版 , 1998.7
◇曲面を中心にして大学で習うトポロジーについて説明した本。基本群、被覆空間、複体のホモロジーを含む。初歩の群論を使うが、読みながら勉強してもよい。
//
トポロジー (岩波全書 ; 276)./ 田村一郎 岩波書店 , 1972.4
◇単体複体のホモロジーが非常に丁寧に解説されており、ホモロジーのアイディアや初歩的な扱いを学ぶにはうってつけの本。予備知識は線形代数の初歩だけで、位相空間の知識は必要ない。
//
複素解析 / L.V. アールフォルス著 ; 笠原乾吉訳 現代数学社 , 1982.3
◇複素函数論の定評ある入門書。複素数や複素関数から始めて、複素積分、級数展開、等角写像、楕円関数、などの内容が扱われる。複素函関数論には幾何学的な側面と解析的な側面とがあり、両者が良く解説されている。
//
フーリエ解析大全 / T.W. ケルナー著 ; 高橋陽一郎訳 朝倉書店 , 1996.8-2003.3
◇解析学の基礎であるフーリエ解析の理論とその精神を、具体的な応用例を通して解説した本。必要な知識としては、1回生で学習する程度の微分積分学だけでよい。
//
シナイ確率論入門コース / Ya.G. シナイ著 ; 森真訳 丸善出版 , 2012.6
◇確率論の基礎概念や重要な話題について一通り概観することができる良書。つまづきやすい確率論独自の用語や測度論の基礎事項についても、直観的な理解が得られるよう気を配りながら書かれている。本書を通読すれば、測度論や確率論を本格的に学ぶ際に役立つであろう。
//
ルベーグ積分から確率論  (共立講座21世紀の数学 ; 10) / 志賀徳造著 共立出版 , 2000.4
◇確率論に必須のルベーグ積分を解説した後,確率論の基礎から,応用としてランダムウォークを中心とした確率過程を論じている。確率論がコンパクトに概観できる。
//
コンピュータの数学 / ロナルド L. グレアム, ドナルド E. クヌース, オーレン パタシュニク [著] ; 有澤誠 [ほか] 訳 共立出版 , 1993.9 原著1st ed. 2nd ed.
◇原題は Concrete Mathematics.いろいろな分野からの楽しく具体的な計算が沢山盛られている。経験豊富な著者たちによって面白く学べる。大学の抽象的数学にショックを受けた人にも数学がそれだけでないという例があることがわかるだろう。コンピュータとは直接関係ないともいえるので,邦訳の題名にとらわれずに見てみるとよい。オイラーの計算に近づけるかもしれない。
//
オートマトン言語理論計算論 ; 1 (Information & computing ; 3-4)  / J. ホップクロフト, J. ウルマン共著 ; 野崎昭弘 [ほか] 共訳  第2版

サイエンス社 , 1984.8-1986.3 原著1st ed. 2nd ed.
//
◇オートマンと言語理論の解説書として最も有名な1冊。オートマンと正規表現および文脈自由言語の理論について一通りのことを学ぶことができる。例や練習問題もあり、これらを解き進めていくと理解が深まるだろう。
計算論 : 計算可能性とラムダ計算 (コンピュータサイエンス大学講座 ; 24) / 高橋正子著 近代科学社 , 1991.8
◇ラムダ計算について,構文論と意味論の両面から丁寧に解説されている。ラムダ計算に関してある程度専門的な内容まで学ぶことができる。証明等に関しても省略をすること無くきちんと書かれているので,内容を良く吟味しながら読み進めていくのがよいだろう。
//
計算論 : 計算可能性とラムダ計算 (コンピュータサイエンス大学講座 ; 24) / 高橋正子著 近代科学社 , 1991.8
◇ラムダ計算について,構文論と意味論の両面から丁寧に解説されている。ラムダ計算に関してある程度専門的な内容まで学ぶことができる。証明等に関しても省略をすること無くきちんと書かれているので,内容を良く吟味しながら読み進めていくのがよいだろう。
//////
参考

http://www.sci.kyoto-u.ac.jp/ja/_upimg/files/curriculum-guide/2019curriculum-guide.pdf

//////
「フェルマーの最終定理」証明された翌年、京都 樫の実学園も「廃園」となった。
//////
「フェルマーの最終定理」証明された翌年、京都 樫の実学園も「廃園」となった。

京都の出来事

 樫の実学園(かしのみがくえん)は1956年に大道哲夫が京都市北区上賀茂南大路町に設立した学習塾。京都新聞の京都大学入試の回答を担当する等、存在感を示した。なお、大道学園長は、2009年に89歳で死去。
学習塾ではあるが、夏には臨海学舎を開催。浜詰にある施設で、多くの子供たちが楽しんでいた。福山哲郎が浪人中に通園し、その後、一時、経営を担当していた。
1996年廃園となったが、有名国私立大学で研究する現役の数学者や科学者、建築家などを教員として採用する独特の教育方針があり、毎年、難関大学、高校、中学への入学実績も高かった。出身者には政治家や実業家も名を重ねている。
なお、廃園後の建物は京都発のラーメンチェーン店天下一品の本部となっている。

/////
目標
(1)「整数論と数論幾何と表現論」と「微分幾何とトポロジーと代数幾何」
純粋数学系としての「フェルマー の最終定理」と「ポアンカレ予想」等証明の完全理解とその発展

保型形式と保形表現の整数論
楕円曲線と暗号理論
代数幾何と情報理論
リーマン幾何学と相対性理論
ゼータ関数の統一理論
など

(2)「量子情報」と「金融工学」と「宇宙統一理論」と「科学史と社会学」
社会と数学の関わり系としての「量子コンピュータと暗号理論」と「株・金融市場(伊藤公式)とBSモデル」等の理論とその発展

量子力学と情報理論
確率解析とブラックショールズ公式
超ひも理論と統一理論
量子情報理論
など

http://www2.sci.kyoto-u.ac.jp/lib/syllabus/syllabus02.htm

物理科学系

書名/著者名
◇教員によるコメント 出版社,出版年 備考

〔解析力学〕
古典力学 上・下 (新版; 物理学叢書 ; 11a,11b) / ゴールドスタイン著 ; 瀬川富士, 矢野忠, 江沢康生訳 吉岡書店, 1983-1984 初版1959 訂正版1960 改訂版1968
量子力学を学ぶための解析力学入門 / 高橋康著 (増補第2版) 講談社, 2000 初版1978
力学 (ランダウ=リフシッツ理論物理学教程) / ランダウ・リフシッツ 東京図書, 1974
解析力学 1 (朝倉物理学大系 / 荒船次郎 [ほか] 編集 ,1-2) / 山本義隆, 中村孔一 朝倉書店, 1998 電子ブック
〔量子力学〕
量子論の基礎 : その本質のやさしい理解のために / 清水明著(新版) サイエンス社 , 2004.4 初版2003
量子力学1・2 / 猪木慶治・川合光 講談社, 1994
現代の量子力学 上・下 / J.J. Sakurai著 ; San Fu Tuan編 ; 桜井明夫訳 (第2版) 吉岡書店, 2014-2015 初版1989
〔電磁気学〕
理論電磁気学 / 砂川重信 [著] (第3版) 紀伊國屋書店, 1999 初版 1965
第2版 1973
電子ブック
〔統計熱力学〕
統計物理学 上、下 / ランダウ, リフシッツ [著] ; 小林秋男 [ほか] 訳 (第3版)

◇学部やや上級向き。 岩波書店, 1980-1980 第2版1966-1967
初版1957-1958
大学演習熱学・統計力学 / 久保亮五編 (修訂版)

◇豊富な問題を解きながら議論するゼミに向いている。ゼミとして解答集を新たに作成する意気込みで臨むと有意義になるだろう。 裳華房, 1998.9 初版1961
統計力学 1,2 / 田崎晴明著

◇全体の構成からとりあげる題材まで丁寧に検討されている素晴らしい本。細部までしっかりと熟読することを薦めたい。
この本だけでほぼ閉じているので標準的なスタイルのゼミに向いている。 培風館 , 2008.12

///
場の古典論 : 電気力学,特殊および一般相対性理論 (ランダウ=リフシッツ理論物理学教程) / エリ・デ・ランダウ, イェ・エム・リフシッツ著 ; 恒藤敏彦, 広重徹訳 東京図書, 1978.10 増訂新版1964
第7刷1984
1959(商工出版社)
初版1959
アインシュタイン選集 / アインシュタイン [著]
 1. 特殊相対性理論・量子論・ブラウン運動  (アインシュタイン選集 ; 1)  [アインシュタイン著] ; 中村誠太郎, 谷川安孝,
   井上健訳編
 2. 一般相対性理論および統一場理論 (アインシュタイン選集 ; 2)  [アインシュタイン著] ; 内山龍雄訳編 共立出版, 1970
量子力学の数学的基礎 / J.V.ノイマン [著] ; 井上健 [ほか] 共訳 みすず書房, 1957.11
スピンはめぐる : 成熟期の量子力学 / 朝永振一郎 [著] ; 江沢洋注 -- 新版 みすず書房 , 2008
活動する宇宙 : 天体活動現象の物理 / 柴田一成[ほか]共編  (第2版)

◇ダイナミックに活動する天体の姿を、観測・理論・シュミレーションの手法から、わかりやすく解説。 裳華房 , 2006 初版 1999

◇学部初級向け
The physical universe : an introduction to astronomy  (A Series of books in astronomy) / Frank H. Shu University Science Books, c1982 *教科の手引きには
1988とあり。
宇宙科学入門 / 尾崎洋二著 (第2版) 東京大学出版会 , 2010.3 初版1996

◇学部上級向け
宇宙物理学 : 星銀河宇宙論 / 高原文郎著 (新版) 朝倉書店 ,2015.5 初版 1999
シリーズ現代の天文学   全17巻 -第1版-、-第2版- 日本評論社 , 2007-2018
宇宙物理学(朝倉現代物理学講座 13) / 佐藤文隆, 原哲也著 朝倉書店 , 1983.4
///


量子情報理論(第3版) 佐川 弘幸(著)   吉田 宣章(著)
暗号と量子コンピュータ 耐量子計算機暗号入門 高木 剛(著) オーム社
表現論入門セミナー 具体例から最先端にむかって 平井 武(共著)   山下 博(著) 遊星社 / 星雲社(発売)
量子論のための表現論 - 林 正人 (著)
量子情報への表現論的アプローチ - 林 正人 (著)
/////
樫の実の「記憶のメモ」を少しづつ・・・
/////
スポンサーサイト



         
プロフィール

kyoto kashinomi

Author:kyoto kashinomi
樫の実学園 ブログへようこそ!


京都 樫の実学園で学んだ卒業生、教職員(先生、先輩方等)の思い出の場である。


京都 樫の実学園関係者の交流の場の一つになることを願っている。

(2011.6月頃より、twitter: @kashinomi_kyoto も存在するそうです。 また、 #kyoto_kashinomi で仲間と会える?らしいです。)

似顔絵掲載続々(現在約150人以上登場、歴代の先輩が似顔絵で集合?、先生も順次、似顔絵で集合、生徒も当時の似顔絵で集合)

樫の実学園ホームページより、似顔絵が作成できます。『無料!携帯!パーツを選ぶだけ。当時の先生、仲間、先輩、後輩、自分(今昔)』を作成して、樫の実学園メールにて投稿してください。


京都 樫の実学園ホームページへアクセスして、出席簿に『大道印』をもらってくださいね。

継続的な同窓会をするために樫の実学園事務局長をいろんな面で助けてください。(同窓会に向けて、似顔絵作成!しておこう!伝説の先生、伝説の友達、伝説の先輩!樫の実の伝説は、終わらない!)

(もし、カテゴリーから画像、写真が見えない場合は、画面直ぐ下の三つあるボタンを押してみてください。よくわからない人は、PCのリンクより、携帯用ブログで確認してください。)

最新記事

最新トラックバック

カテゴリ

リンク

このブログをリンクに追加する

検索フォーム

ブロとも申請フォーム

この人とブロともになる

QRコード

QRコード